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We derive a formulation to calculate the excess chemical potential of a fraction ofN1 particles interacting
with N2 particles of a different species. The excess chemical potential is calculated numerically from first
principles by coupling molecular dynamics and Thomas-Fermi density functional theory to take into account
the contribution arising from the quantum electrons on the forces acting on the ions. The choice of this simple
functional is motivated by the fact that the present paper is devoted to the derivation and the validation of the
method but more complicated functionals can and will be implemented in the future. This method is applied in
the microcanonical ensemble, the most natural ensemble for molecular dynamics simulations. This avoids the
introduction of a thermostat in the simulation and thus uncontrolled modifications of the trajectories calculated
from the forces between particles. The calculations are conducted for three values of the input thermodynamic
quantities, energy and density, and for different total numbers of particles in order to examine the uncertainties
due to finite-size effects. This method and these calculations lie the basic foundation to study the thermody-
namic stability of dense mixtures, without anya priori assumption on the degree of ionization of the different
species.
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I. INTRODUCTION

The thermodynamic stability of dense ionic mixtures
bears important consequences not only on our understanding
of the thermodynamic properties of dense binary systems,
but also on the structure and the evolution of gaseous giant
planets. Indeed, the interior of jovian planets is composed
essentially of hydrogen and helium under either atomic or
molecular form in the outermost envelope and under the
form of a partially or fully ionized plasma in the inner re-
gions [1,2]. Temperatures and pressures along the Jupiter or
Saturn internal isentrope conditions range from about 100 K
to ,20 000 K and from about 1 bar to,60 Mbar. Under
these conditions, not only the hydrogen/helium mixture ex-
periences pressure ionization, but the homogeneous mixture
may become thermodynamically unstable. Such an immisci-
bility between helium-rich droplets and a hydrogen-rich fluid
will liberate extra gravitational energy, modifying signifi-
cantly the energy balance and thus the cooling of the planet
[3–5]. For terrestrial applications, inertial confinement fusion
experiments or laser-driven shock-wave experiments on hy-
drogen isotopes reach densities and temperatures character-
istic of the aforementioned planetary conditions, probing the
thermodynamic properties of dense plasmas and requiring a
correct theoretical foundation to describe their equilibrium
properties.

The theoretical description of the thermodynamic phase
diagram of a dense two-component system is a particularly

complicated task, for it requires a correct description of the
excessfree enthalpy(in a pressure-temperature diagram) of
the mixture with respect to the pure phases. This excess
quantity is very small compared with the contributions of
both the mixture and the pure phases(it is by definition close
to zero near the critical point) and therefore must be calcu-
lated with very high accuracy. Early calculations, based on
simplified analytic or semianalytic calculations of the free
energy of the plasma, assumed hydrogen and helium atoms
to be fully ionized[6–9]. Moreover, these calculations as-
sumed either a rigid electron background, the so-called bi-
nary ionic mixture(BIM ) model, or a polarizable electron
background within the linear response approximation. Al-
though correct at very high density or temperature, these
assumptions fail when electrons and protons start to recom-
bine. The phase diagrams calculated under these conditions
are thus restricted to a reduced(high) density-temperature
range. Further attempts to do a consistent, first-principles
determination of the H/He phase diagram, with no assump-
tion on the electron distribution around the ionic centers and
correct treatment of the variousN-body ion and electron in-
teractions, were based either on extrapolation at finite-
temperature of zero-temperature calculations[10] or on in-
correct thermodynamics integration[11] and thus remain
also of doubtful validity. Under such circumstances, it is
clear that not only the thermodynamic phase diagram of a
hydrogen-helium system at high density has not been estab-
lished accurately yet, but the correct calculation of the excess
free enthalpy of a concentration of atoms immersed in an
interacting system of different species remains to be done.

In this paper, we derive a method to address this very
point, which is crucial for a reliable determination of the
thermodynamic phase diagram of dense binary mixtures.
This method is applied in the microcanonical ensemble and
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allows direct calculation, from first principles, of the excess
chemical potential of a binary mixture of nuclei and elec-
trons interacting through the Coulomb potential. Calculations
in the microcanonical ensemble allow a fully consistent cal-
culation between the forces acting on the particles and the
induced trajectories, without the introduction of thermostats.
We first derive the thermodynamic equations which allow the
exact determination of the excess chemical potential. We
then combine the density functional theory(DFT) to describe
the quantum mechanical properties of the electrons and mo-
lecular dynamics(MD) to integrate the ion classical equa-
tions of motion to calculate this chemical potential. Since the
present paper is devoted to the derivation of the method, we
use a simplified functional form for the electrons—namely,
the Thomas-Fermi approximation—in order to speed up the
minimization of the energy. We limit our calculations to three
different values of the appropriate input thermodynamic
quantities—namely, energy and density in the microcanoni-
cal formulation used in the present paper. In a future work,
devoted to the global analysis of the H/He mixture under
various thermodynamic conditions, a more general func-
tional form will be implemented. Section II presents the deri-
vation of the chemical potential ofN1 atoms of a given spe-
cies interacting withN2 nuclei of a different species. Section
III describes our general energy functional to take into ac-
count the quantum behavior of the electrons when computing
the ionic configurations, a necessary condition for an accu-
rate treatment of the problem. Section IV is devoted to the
description of the MD numerical computations, to the discus-
sion of the finite-size effects, and to the presentation of the
results obtained for different thermodynamic conditions. The
last section is devoted to the conclusion.

II. DERIVATION OF THE EXCESS
CHEMICAL POTENTIAL

As mentioned in the Introduction, the ultimate goal of our
calculations is to determine the thermodynamic stability of a
given numberN1 of atoms immersed in a system ofN2 par-
ticles of a different species under given thermodynamic con-
ditions, without any assumption on the electron distribution
around the nuclei—i.e., on the degree of ionization of the
atoms. The stability of such a mixture involves the calcula-
tion of the mixing enthalpy of the system—i.e., of the excess
chemical potential of each immersed atom. The chemical
potentialmi of a particlei immersed in a plasma corresponds
by definition to the change of the state function of the appro-
priate thermodynamic ensemble when one adds or removes
this particle to/from the plasma. When the thermodynamic
limit is achievedsN→` ,V→` ,N/V=constd, the result does
not depend either on the ensemble or on the fact that the
particle has been added to or removed from the surrounding
plasma. Because of the large fluctuations of the system away
from its equilibrium configuration, one cannot add or remove
directly a particle, in particular at high density or if the in-
teraction potential is too stiff. The correct approach consists
in modifying progressively the interaction potentiall Vsrd
between the particlei and the surrounding particlesj Þ i. The
casel=0 corresponds to the case where the particlei does

not interact with the other particles, but retains its discern-
ability character(case of an ideal mixture), whereas the case
l=1 corresponds to the sought two-component system with
full interactions. This method illustrates the so-called ther-
modynamic integration approach. In the microcanonical en-
semble, with fixed energy, volume, and number of particles
sE,V ,Nd, the chemical potential of a particle “1” of massm1

corresponds to the calculation of the following expression
derived in Appendixes A–C:
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whereG is the gamma function,V is the cell volume,KN is
the kinetic energy, andEsld is the energy corresponding to
the system with the interaction potentiallVsrd. The brackets
k¯l denote a microcanonical average. The first term on the
right-hand side is the ideal part of the chemical potential,
arising from the entropy cost due to the particle insertion or
removal, while the second term represents the nonideal con-
tribution of the chemical potential, which depends on the
interaction between the particle under consideration and the
rest of the system. The integral can be estimated by a Gauss-
Legendre quadrature[12]
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wherexi are the zeros of Legendre polynomials andvi are
the associated weights[13].

These calculations, in practice, require great caution. By
definition of the microcanonical ensemble, the total
(potential1kinetic) energy of the system must be conserved
along the simulation. As a consequence, at each step where
the potential goes fromliV to li+1V, the kinetic part of the
energy must be renormalized in order to maintain the total
energy constant. Therefore, the correct calculation of the
chemical potential consists in generating several particle
configurations(to be described in Sec. IV), corresponding to
the Hamiltonian H+lV, and in computing the averages
which appear in Eq.(1). This can be done by a fully classical
simulation if the interaction between each kind of particles is
described by a classical two-body potential between par-
ticles. Such an approach, however, cannot take into account
the fact that the potentials strongly depend on the density and
temperature, evolving from a potential characteristic of at-
oms at low density and temperature to a long-range Coulomb
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potential characteristic of a fully ionized plasma at high den-
sity and/or temperature. Therefore, the correct phase dia-
gram, without any assumption on the interaction potentials,
requiresab initio generations of representative ionic configu-
rations. This approach is presented in the next sections.

III. FUNCTIONAL OF THE ELECTRONS

As mentioned in the Introduction, a correct study of the
problem under consideration requires a correct treatment of
the ion and electron interactions. This implies to take into
account the effects of the quantum nature of the electrons on
the forces acting on the ions. Since the pioneering work of
Hohenberg and Kohn[14], many problems involving inter-
acting electrons have been tackled within the framework of
the density functional theory. This theory turns the diagonal-
ization problem of a many-body Hamiltonian into the mini-
mization of a functionalVfnsr dg of the electron density, a
much easier approach when dealing with many electrons. For
this reason, the DFT has been extensively used in condensed
matter and is described in detail in many textbooks(see, e.g.,
[15]). In the framework of the DFT, the grand potential of
the electrons can be written in the form

Vfnsr dg =E dr fViesr d − mgnsr d + Ffnsr dg, s3d

whereFfnsr dg is a universal functional of the ground-state
densitynsr d of the interacting electrons andViesr d denotes
the external ion-electron potential.Vfnsr dg is minimum
whennsr d corresponds to the correct density. In our calcula-
tions, we have chosen to writeVfnsr dg in the following sim-
plified form (in order to speed up the minimization)

Vfnsr dg = kBTE dr nsr d
F3/2shd
F1/2shd

+ cexE dr fnsr dg4/3

+ Ecorrfnsr dg + cwE dr
f¹nsr dg2

nsr d

+
e2

2
E E dr 1dr 2

nsr 1dnsr 2d
ur 1 − r 2u

+E dr nsr dfViesr ,Riond − mg, s4d

where cex=−3
4s3/pd1/3e2 is the exchange Dirac coefficient,

cW=ss /8d"2/me is the von Weizsäcker gradient correction
coefficient[15,16] (with s=1 in our case), andEcorrfnsr dg is
given by a parametrization[17] of Monte Carlo simulations
[18]. F3/2shd and F1/2shd are the Fermi integrals, whereh
=fm−Vsr dg /kBT is obtained by the inversion of the relation
nsr d=s2p2d−1s2me/"2d3/2skBTd3/2F1/2shd. Accurate fitting for-
mulas of the Fermi integrals and inverse integrals have been
published in the literature[19,20]. For a given configuration
of the nuclei, we are able to find the electronic densitynsr d,
which corresponds to the ground state of the system. The
Hellmann-Feynman theorem[21,22] enables us to calculate
the forces arising from this electron density acting on the
nuclei and the stress tensor on a cell(of which diagonal

terms correspond to the pressure components).
Within the Born-Oppenheimer approximation, we can

thus make a classical molecular dynamics simulation of the
nuclei subsystem, while taking into account in the calcula-
tion of the forces the quantum behavior of the electrons. The
Born-Oppenheimer approximation expresses the fact that the
electrons respond instantaneously to a change of configura-
tion of the ions, a fairly good assumption for dense ionic
systems. The calculation of the last term on the right-hand
side of Eq.(4)—i.e., the interaction with the external ionic
potential—involving effective pseudopotentials, is described
below.

IV. MOLECULAR DYNAMICS

A. Method

We have computed Eq.(1) for a number ofN1 helium
atoms of nuclear chargeZ1=2 and massM1 immersed in a
system ofN2 hydrogen particles of chargeZ2=1 and mass
M2. The thermodynamic averages in Eq.(1) are estimated by
generating a set of representative configurations of the sys-
tem in a cubic reference cell of sizeL with periodic boundary
conditions. This is done by a dynamical simulation of the
equations of motion for the ions:

Mi
d2Ri

dt2
= Fi , s5d

whereMi is the mass of theith nuclei. The forcesF i between
particles [or equivalently the total potentialVsr d] arising
from electron and ionN-boby interactions, beyond any linear
approximation for the electron-induced screening effects of
the core potential, are calculated from a density functional
approach. These forces involve the ones arising from the
quantum electron distribution obtained from Eq.(4) and the
ones derived from the interionic potentialZiZje

2/ uRi −Rju.
The equations of motion are solved with a standard Verlet
velocity algorithm[23]. The crucial point of the present pa-
per is that these calculations are completed in the microca-
nonical ensemble—i.e., at constant energy, volume, and total
momentum[24]. Standard simulations, in other thermody-
namic ensembles, imply the introduction of a thermostat, ei-
ther by reinitializing the velocities “periodically” or by intro-
ducing new degrees of freedom. These thermostats, however,
yield a perturbation of the trajectories, which no longer rep-
resent the ones determined by the forces. Such unphysical
effects are avoided in the present microcanonical calcula-
tions, which ensure full consistency between the forces and
the trajectories.

The ab initio calculations, with the aforedescribed func-
tional, have been performed with theABINIT code[25]. We
replace the bare Coulomb potential of the nucleus by a
pseudopotential, which differs from the true Coulomb poten-
tial below a cutoff radiusr loc, removing the cusp constraint at
r →0 and avoiding the 1/r singularity. The pseudopotentials
used in our simulations are those of Hartwigsenet al. for
helium [26] and Goedeckeret al. for hydrogen[27]. These
pseudopotentials are constructed so as to reproduce with
high accuracy the Kohn-Sham free energy.
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The aforementioned cutoff radius determines an upper
bound in density for the domain of validity of the pseudopo-
tentials. The ones used in the present calculations[28] have
r loc=0.2 bohr, which implies a density limit:a* r loc—i.e.,
rs*0.2, where rs=a/a0 is the density parameter,a
=sV/ s4pN/3dd1/3 is the mean distance between nuclei anda0

is the Bohr radius. This condition corresponds tor
&335 g/cm3.

As mentioned earlier, in order to maintain the total energy
constant during the process of switching on or off the inter-
action, the kinetic contributionEkin must be renormalized.
For the thermodynamic conditions of our runs, this corre-
sponds to a decrease ofEkin because the potential energy
increases as the interaction is switched onsl=0→1d. This
implies a large initial kinetic energy. The condition is more
easily fulfilled if one chooses to switchoff the interaction
instead of switching it onsl=1→0d. Indeed, during such a
process, the kinetic part must be increased(instead of de-
creased), which is always possible. As a consequence of this
renormalization, we cannot associate an accurate temperature
until the thermodynamic limit is reached. This process is
represented in Fig. 1, which displays the kinetic energy dur-
ing the whole process and shows the discontinuities appear-
ing in the mean value ofEkin whenl change fromli to li+1.

B. Results

We have tested our procedure on a system consisting of
63 hydrogen nuclei and 1 helium nucleus. The thermody-
namic conditions of our microcanonical simulation areEtot
=132.21 hartrees andV=L3=57.906 bohr3, which corre-
spond tors.0.6, T.2 105 K, and P.7 104 GPa. The ref-
erence cell of the simulation assumes periodic boundary con-
ditions, with one particle exiting the cell on one side replaced
by one entering the opposite side. In order for the final re-
sults not to depend on the initial distribution, which corre-
sponds to a random distribution of the positions and veloci-

ties (obtained by a classical molecular dynamics simulation
to prevent atoms to overlap), we let the system relax during
4000 time steps, a very conservative limit for the considered
densities and temperatures. Even though the main contribu-
tion to the total energy atrs=0.6 comes from the nearly
uniform electron background, the forces depend partly on the
nonuniformity of this electron density distribution. There-
fore, in order to calculate the forces correctly, the electronic
density—more precisely, the departure of the density from a
homogeneous distribution—must be calculated with very
high accuracy. In order to fulfil this condition, we require the
energy to converge withinuDE/Eu,10−8. Unfortunately,
high accuracy in the functional minimization does not pre-
clude energy fluctuations during the simulation due to the
discretization of the Newton equations and, most impor-
tantly, to finite-size effects. These points are examined be-
low. The equations of motion are solved using the Verlet
algorithm with a time step equal todtion=0.25 a.u. This time
step enables us to resolve the dynamics of our system accu-
rately for any valuelV of the He-H interaction. Figure 2
displays the conservation of the total energy obtained in our
simulation with this time step. The integral, Eq.(2), is first

FIG. 1. Kinetic energy during the whole switch off of the helium
atom embedded in a 63-hydrogen-atom system, in the 3-point
quadrature case. The average kinetic energies are displayed as the
solid line, the instantaneous ones as the dashed line. The vertical
lines separate the different domains of constant switching parameter
l.

FIG. 2. Total (solid line) and potential(dotted line) energies
corresponding to the simulation ofh63 H,1 Hej with the switching
parameter equal to 0.5.

FIG. 3. Different values ofkh1/fEsld−Vgj]Esld /]ll obtained
for the different quadratures. A quadratic fit of the results is given as
a guide for the eye.

WINISDOERFFER, CHABRIER, AND ZÉRAH PHYSICAL REVIEW E70, 026403(2004)

026403-4



calculated with anM-point Gauss-Legendre quadrature. Af-
ter the first 4000 time steps to let the system relax, an other
4000 time steps simulation is ran to generate several configu-
rations. The argument]lEsld / fEsld−Vg is calculated nu-
merically, by calculatingEsl±0.01d every 10 time steps for
a fixed configuration andEsld−V. A last run is devoted to
the calculation of the ideal part of the chemical potential by
generating 10 000 different configurations of 63 H atoms and
the evaluation ofkKN

3/2l.
We have tested the validity of theM-point quadrature to

estimate the integral, Eq.(2), by doing similar calculations,
for the same thermodynamic conditions, with a three-point,
six-point, and nine-point quadrature. The results are shown
in Fig. 3, and the resulting evaluations of the integral are
given in Table I. As seen in this table, a six-point quadrature
is enough to calculate accurately the integral(2). Our calcu-
lations of the chemical potential −m1/kT of a helium atom
embedded in a 63-H atom plasma for our thermodynamic
conditions (−m1

0/kT corresponds to the ideal part of the
chemical potential and −m1

1/kT to the excess contribution)
yield

−
m1

0

kT
= 14.02, −

m1
1

kT
= 5.14, −

m1

kT
= 19.16. s6d

In order to estimate theN dependence of our result, we
have also calculated the entropy cost which corresponds to
the removal of 2 He particles surrounded by 126 H atoms
and 4 He particles surrounded by 252 H atoms, for the same
thermodynamic conditions(density and energy) as for the
h1 He,63 Hj system. These computations are much more
time consuming(the computation time scales roughly as
t~N3), and the removal of the helium atom must be done 2
and 4 times, respectively. We expect a very small depen-
dence of the results on the sizesNd of the simulated system.
Indeed, we do not calculate the chemical potential ofoneHe
atom, but the chemical potential of a constantfraction sxHe

=1/64d of He in a H-He mixture. As a consequence, theN
dependence of the results stems from the interaction between
a He atom with its replicas(due to the periodic condition

boundaries) and from the fact that the accessible phase space
increases with the total number of atoms. The first effect
becomes important when the characteristic length of interac-
tion is of the same order as the simulated box—i.e., at much
higher density than the present simulations. Quantification of
the second effect requires simulations with different values
of N. The results are presented in Table II. The chemical
potential is estimated with a centered scheme; i.e., the
chemical, potential corresponding to a helium fractionxHe
=1/128=0.008 is evaluated from the entropy difference be-
tween theh0 He,63 Hj system and theh1 He,63 Hj system
(with full interaction). The statistical uncertainties on
−m1/kT are ±0.02 for theh1 He,63 Hj and h2 He,126 Hj
systems, and ±0.04 for theh4 He,252 Hj one(achieving the
same statistical uncertainties scales asN3). The results be-
tween the three systems for a He fraction equal to 0.008, as
shown in the table, are thus fully compatible, and no statis-
tically significant trend appears. The same simulations yield
also the estimation of the helium chemical potential for dif-
ferent number fractions. All the results are given in Table II
and are compatible within the statistical uncertainties. For
the h1 He,63 Hj mixture, we have also conducted calcula-
tions for two other thermodynamic conditions, displayed in
Table III. As expected intuitively, it is easier to add an atom
in a low-density plasma than in a high-density one(at con-
stant total energy) or in a cold plasma than in a hot one(at
constant density).

It is interesting to compare our results with
the limit of rigid electronic background at high density
for the binary ionic mixture, the so-called BIM limit[29,30].
Our reference conditionsEtot=132.21 hartrees andV=L3

=57.906 bohr3—i.e., rs.0.6—correspond to T=2.2
3105 K, P=6.73104 GPa, andDS=19.15kB (Table II) in
the simulation. For this density and temperature, the BIM
corresponds toP=7.23104 GPa andDS=21 kB. We have
also ran a simulation at higher density, namelyrs=0.3, which
is close to the density limit of our pseudopotentials. The total
energy is equal toEtot=672.76 hartrees. In that case, the
present calculations yield T=4.53105 K, P=2.15
3106 GPa, whereas the BIM results areT=4.53105 K, P
=2.23106 GPa. The small differences between the simula-
tions and the BIM reflect the contribution due to the electron

TABLE I. Integration of Eq.(2).

Three
points

Six
points

Nine
points Trapeze

E
l=0

l=1

dlK 1

Esld − V

] Esld
] l

L 0.06568 0.05578 0.05548 0.05565

TABLE II. Finite-size effects on the chemical potential.

System h1 He,63 Hj h2 He,126 Hj h4 He,252 Hj

xHe=NHe/ sNH+NHed 0.004 0.008 0.012 0.004 0.008 0.012 0.004 0.008 0.012

−m1/kT 19.16 19.15 19.15 19.15 19.17 19.14 19.21

TABLE III. Chemical potentials for different thermodynamic
conditions.

hEtotshartreed ,
V sbohr3dj

h132.21,
57.91j

h132.21,
139.40j

h20.06,
139.40j

rs 0.6 0.8 0.8

−m1/kT 19.16 16.59 13.94
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gas polarization(inhomogeneous distribution), which starts
playing a role around these densities, and the contribution
due to the interactions between particles ofdifferent species
(namely, H and He). These latter are not taken into account
in the BIM, which is based on the so-called linear volume
law, where only the ideal entropy of mixture is included.

V. CONCLUSION

In this paper, we have derived a new method, based on
physics first principles, to calculate the excess potential of a
number fraction of particles immersed in a mixture of par-
ticles of different species, as given by Eq.(1). The calcula-
tions are based on a consistent treatment of the forces acting
on the nuclei, taking into account the contribution arising
from the quantum electrons, by calculating self-consistently
the equations of motion of the classical nuclei and the func-
tional density of the electronic distribution. The method is
applied directly in the microcanonical ensemble, avoiding
the use of a thermostat, and thus ensures consistency be-
tween the forces and the trajectories of the particles. The
bare Coulomb potential is approximated at short distances by
pseudopotentials which remain valid up to large densities
srs*0.2d, where the linear response theory becomes valid.
The thermodynamic quantities are calculated for different
configurations, representing the evolution of the interaction,
and thus of the system, from the initial case of anideal atom
“1” inserted in a system of particles “2” to the final case
where all interactions between the immersed particle and the
surrounding nuclei are taken into account. Only properly fol-
lowing such a series of changes of equilibrium states ensures
thermodynamic consistency and thus allows a correct evalu-
ation of the energy and pressure contribution to the excess
chemical potential of the immersed particle. Previous simu-
lations [11] calculated the excess enthalpy directly from the
difference between the final and the initial states, yielding an
incorrect evaluation of the contraction work and, thus, of the
pressure contribution.

The validity of the method has been tested with the case
of a dense hydrogen/helium mixture for three different he-
lium fractions and three different thermodynamic states. The
forces are calculated with very high accuracy, with a conver-
gence criteriumuDE/Eu,10−8. Finite-size effects on the final
results have been quantified and found to be small
s,10−3d, leading to fluctuations of the same order on the
total energy(see Fig. 2). The method provides robust foun-
dations for accurate evaluations of the excess thermody-
namic quantities of dense binary mixtures, without any as-
sumption on the electron density distribution and thus on the
degree of ionization of the atoms. This opens the door to
accurate calculations of phase diagrams of dense mixtures of
atoms and partially or fully ionized plasmas, a subject of
prime interest for the structure and the evolution of giant
gaseous planets. Work in this direction is in progress.

ACKNOWLEDGMENTS

We are very grateful to Gérard Massacrier and Alexander
Potekhin for very useful discussions and insightful remarks.

APPENDIX A: MICROCANONICAL AVERAGE

We consider a(classical) system with fixed total energyE,
volumeV, and total momentumptot, which contains two dif-
ferent kinds of particlesN1 andN2, with N=N1+N2. In this
microcanonical ensemble, the number of accessible states for
this system is

d V =
dE

h3NN1 ! N2!
E dpNdqN dsE − Hd dSptot − o

j=1

N

pjD ,

sA1d

whereH=o j=1
N pj

2/2mj +VsqNd is the Hamiltonian of the ionic
centers and includes the modification of the Coulomb poten-
tials due to the electron gas polarization,dpN=Pi=1

N P j=1
3 dpij ,

anddpij is the j component of the momentum of the particle
i, the same fordqN. Then

V =
1

h3NN1 ! N2!
E dpNdqN usE − HddSptot − o

j=1

N

pjD
;

1

h3NN1 ! N2!
IsE,ptotd, sA2d

whereusxd=1 if x.0,0 otherwise, andIsE,ptotd denotes the
integral.

The Laplace transform(towardE) of I is [31]

LfIg =E dpNdqN dSptot − o
j=1

N

pjD E
minsHd

+`

dE usE − Hde−sE

=E dpNdqN dSptot − o
j=1

N

pjD1

s
e−sH

=E dpN dSptot − o
j=1

N

pjD
3expS− so

j=1

N
pj

2

2mj
DE dqN1

s
e−sVsqNd.

The HamiltonianH is general and does not have, in par-
ticular, to be positive, although it needs to have a lower limit.
Note that with a change of variablez=E−minsHd, the inte-
gral eminsHd

+` becomese0
+`, and the results remain unchanged.

Then

J0 =E dpN dSptot − o
j=1

N

pjDexpS− so
j=1

N
pj

2

2mj
D ; J3,

whereJ=edpx
Ndsptotx

− o
j=1

N

pjx
dexps−so

j=1

N

pjx
2 /2mj d.

J can be calculated by Fourier transform:
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FfJg =E dpx
N 1
Î2p

E
−`

+`

dptotx
dSptotx

− o
j=1

N

pjxD
3expS− so

j=1

N pjx
2

2mj
D exp sizptotx

d

=
1

Î2p
p
j=1

N E dpjx
expS− s

pjx
2

2mj
+ izpjx

D
=

1
Î2p

Sp
j=1

N Î2pmj

s
D expS−

o j=1

N
mj

2s
z2D .

Then

J = F −1
†F†J‡‡ =

p j=1

N Î2pmj

Î2po j=1

N
mj

1

ssN−1d/2

3expS−
s

2o j=1

N
mj

ptotx
2 D .

With ptot=0, we get

J0 = J3 = 1 p j=1

N Î2pmj

Î2po j=1

N
mj
2

3

1

s3sN−1d/2

and

I = L−1fLfIgg

= 1 p j=1

N Î2pmj

Î2po j=1

N
mj
2

3

E dqN u„E − VsqNd…

3
fE − VsqNdg3sN−1d/2

GX3sN − 1d
2

+ 1C .

Equation(A2) thus reads

VsE,ptot = 0d =
1

h3NN1 ! N2! 1 p j=1

N Î2pmj

Î2po j=1

N
mj
2

3

3E dqNu„E − VsqNd…
fE − VsqNdg3sN−1d/2

GS3sN − 1d
2

+ 1D .

sA3d

In a similar way, we have forv=̂s]V /]EdV,N1,N2
:

v =
1

h3NN1 ! N2! 1 p j=1

N Î2pmj

Î2po j=1

N
mj
2

3

E dqN u„E − VsqNd…

3
fE − VsqNdg3sN−1d/2−1

GS3sN − 1d
2

D . sA4d

For a quantity depending only onqN—i.e., AsqNd—we have

kAl ;
1

v

1

h3NN1 ! N2!
E dpNdqNdsE − HddSptot − o

j=1

N

pjDAsqNd

=
E dqNu„E − VsqNd…fE − VsqNdg3sN−1d/2−1AsqNd

E dqNu„E − VsqNd…fE − VsqNdg3sN−1d/2−1

, sA5d

wherek¯l denotes amicrocanonical average.

APPENDIX B: CHEMICAL POTENTIAL BY THE
PARTICLE INSERTION METHOD

The definition of the chemical potential of the particle 1 is

−
m1

kT
= S ] S

] N1
D

E,V,N2

. sB1d

With S=k ln v and the equations derived in Appendix A,
this yields

−
m1

kT
=

ln vN1+1 − ln vN1

N1 + 1 −N1

= ln
vN1+1

vN1

=ln3S2pm1

h2 D3/2S o j=1

N
mj

o j=1

N+1
mj
D3/2

1

N1 + 1

GS3sN − 1d
2

D
GS3N

2
D

3

E dqN+1 usE − VdfE − VsqN+1dg3N/2−1

E dqNusE − VdfE − VsqNdg3sN−1d/2−1 4 . sB2d

Let us defineIN as

IN =E dqN u„E − VsqNd…fE − VsqNdg3sN−1d/2−1

;E dqN u„E − VsqNd… KN
3sN−1d/2−1,

whereKN;E−VsqNd is a function ofqN and should not be
formally confused with the kinetic part of the Hamiltonian
(even if KN is equal to the kinetic energy in a molecular
dynamics simulation).

MICROCANONICAL CALCULATIONS OF EXCESS… PHYSICAL REVIEW E 70, 026403(2004)

026403-7



We get

IN+1 =E dqN+1E dqN usE − VdfE − VsqNd − VsqN+1dg3N/2−1

=E dqN+1E dqN usE − VdKN
3/2KN

3sN−1d/2−1

3S1 −
VsqN+1d

KN
D3N/2−1

,

and:

IN+1

IN
=E dqN+1KKN

3/2S1 −
VsqN+1d

KN
D3N/2−1L ,

which yields, for the chemical potential

−
m1

kT
= ln 3S2pm1

h2 D3/2S o j=1

N
mj

o j=1

N+1
mj
D3/2

1

N1 + 1

GS3sN − 1d
2

D
GS3N

2
D

3E dqN+1KKN
3/2S1 −

VsqN+1d
KN

D3N/2−1L4 . sB3d

APPENDIX C: CHEMICAL POTENTIAL BY THE
THERMODYNAMIC INTEGRATION METHOD

The variation of entropy when going from a state with
interactionl=0 to l=1 reads

DS=E
l=0

l=1

dl
] S

] l
. sC1d

We can thus derive

1

k

] S

] l
=

1

v

] v

] l
=

]lE dqN+1u„Esld − VsqN+1d…fEsld − VsqN+1dg3N/2−1

E dqN+1u„Esld − VsqN+1d…fEsld − VsqN+1dg3N/2−1

= S3N

2
− 1D

3

E dqN+1usEsld − VsqN+1dd
1

E − V

] E

] l
fEsld − VsqN+1dg3N/2−1

E dqN+1usEsld − VsqN+1ddfEsld − VsqN+1dg3N/2−1

= S3N

2
− 1DK 1

E − V

] E

] l
L .

The thermodynamic integration proceeds in two steps. The
first one deals with the insertion of a free particle into the
system. The entropy cost of this insertion is given by the
formula established for the insertion method:

−
m1

0

kT
= ln3S2pm1

h2 D3/2S o j=1

N
mj

o j=1

N+1
mj
D3/2

1

N1 + 1

3

GS3sN − 1d
2

D
GS3N

2
D VkKN

3/2l4 , sC2d

whereV is the cell volume.

The interaction is then progressively switched on, and the
nonideal part of chemical potential is then given by

−
m1

1

kT
= S3N

2
− 1DE

l=0

l=1

dlK 1

Esld − V

] Esld
] l

L . sC3d

The total chemical potential is the sum of the two contribu-
tions:

−
m1

kT
= −

m1
0

kT
−

m1
1

kT
. sC4d
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