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Microcanonical calculations of excess thermodynamic properties of dense binary systems
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We derive a formulation to calculate the excess chemical potential of a fractiNp pérticles interacting
with N, particles of a different species. The excess chemical potential is calculated numerically from first
principles by coupling molecular dynamics and Thomas-Fermi density functional theory to take into account
the contribution arising from the quantum electrons on the forces acting on the ions. The choice of this simple
functional is motivated by the fact that the present paper is devoted to the derivation and the validation of the
method but more complicated functionals can and will be implemented in the future. This method is applied in
the microcanonical ensemble, the most natural ensemble for molecular dynamics simulations. This avoids the
introduction of a thermostat in the simulation and thus uncontrolled modifications of the trajectories calculated
from the forces between particles. The calculations are conducted for three values of the input thermodynamic
guantities, energy and density, and for different total numbers of particles in order to examine the uncertainties
due to finite-size effects. This method and these calculations lie the basic foundation to study the thermody-
namic stability of dense mixtures, without aaypriori assumption on the degree of ionization of the different
species.
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[. INTRODUCTION complicated task, for it requires a correct description of the
excesdree enthalpy(in a pressure-temperature diagnaof
The thermodynamic stability of dense ionic mixturesthe mixture with respect to the pure phases. This excess
bears important consequences not only on our understandirgantity is very small compared with the contributions of
of the thermodynamic properties of dense binary systemsyoth the mixture and the pure phasitss by definition close
but also on the structure and the evolution of gaseous gianb zero near the critical poipand therefore must be calcu-
planets. Indeed, the interior of jovian planets is composedated with very high accuracy. Early calculations, based on
essentially of hydrogen and helium under either atomic osimplified analytic or semianalytic calculations of the free
molecular form in the outermost envelope and under thenergy of the plasma, assumed hydrogen and helium atoms
form of a partially or fully ionized plasma in the inner re- to be fully ionized[6-9]. Moreover, these calculations as-
gions[1,2]. Temperatures and pressures along the Jupiter gitumed either a rigid electron background, the so-called bi-
Saturn internal isentrope conditions range from about 100 Kjary ionic mixture(BIM) model, or a polarizable electron
to ~20 000 K and from about 1 bar te 60 Mbar. Under bPackground within the linear response approximation. Al-
these conditions, not only the hydrogen/helium mixture exihough correct at very high density or temperature, these
periences pressure ionization, but the homogeneous mixtuSSUMPtions fail when electrons and protons start to recom-

may become thermodynamically unstable. Such an immisci2!n€: The phase diagrams calculated under these conditions
bility between helium-rich droplets and a hydrogen-rich fluid are thus restricted to a reduceigh) density-temperature

will liberate extra gravitational energy, modifying signifi- o9 " Further attempts to do a consistent, first-principles

ntlv the enerav balan nd thus th lina of the plan etermination of the H/He phase diagram, with no assump-
cantly the energy balance a us e cooling ot the plangl,, o the electron distribution around the ionic centers and
[3-5]. For terrestrial applications, inertial confinement fusion

. . _ correct treatment of the variolé-body ion and electron in-
experiments or laser-driven shock-wave experiments on he o ctions, were based either on extrapolation at finite-

qugen isotopes reaqh densities and temperatures CharaCtFerfnperature of zero-temperature calculatipbg] or on in-
istic of the afqrementlor_]ed planetary conditions, probmg_ the‘Correct thermodynamics integratigil] and thus remain
thermodynamlq properties .Of dense plqsmas a}nd requinng Jso of doubtful validity. Under such circumstances, it is
correct theoretical foundation to describe their equilibriumq oo that not only the thermodynamic phase diagram of a
pro1|9hert|ehs. ical d o f the th d ic oh hydrogen-helium system at high density has not been estab-
_ The theoretical description of the thermodynamic phasggpe accurately yet, but the correct calculation of the excess
diagram of a dense two-component system is a particularly o enthalpy of a concentration of atoms immersed in an
interacting system of different species remains to be done.
In this paper, we derive a method to address this very

*Electronic address: cwinisdo@ens-lyon.fr point, which is crucial for a reliable determination of the
"Electronic address: chabrier@ens-lyon.fr thermodynamic phase diagram of dense binary mixtures.
*Electronic address: zerah@cea.fr This method is applied in the microcanonical ensemble and
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allows direct calculation, from first principles, of the excessnot interact with the other particles, but retains its discern-
chemical potential of a binary mixture of nuclei and elec-ability characteicase of an ideal mixtujewhereas the case
trons interacting through the Coulomb potential. Calculations\=1 corresponds to the sought two-component system with
in the microcanonical ensemble allow a fully consistent calfull interactions. This method illustrates the so-called ther-
culation between the forces acting on the particles and thenodynamic integration approach. In the microcanonical en-
induced trajectories, without the introduction of thermostatssemble, with fixed energy, volume, and number of particles
We first derive the thermodynamic equations which allow the(E,V,N), the chemical potential of a patrticle “1” of masg
exact determination of the excess chemical potential. Weorresponds to the calculation of the following expression
then combine the density functional the@B#T) to describe  derived in Appendixes A—C:
the quantum mechanical properties of the electrons and mo-

lecular dynamic§MD) to integrate the ion classical equa- N 3/2 I‘<3(N - 1))
tions of motion to calculate this chemical potential. Since the 27rmy |32 Ej=1 m 1 2
present paper is devoted to the derivation of the method, we | 1 =in h2 2N+1 m N, +1 3N
use a simplified functional form for the electrons—namely, j=1 1 I“(?)

the Thomas-Fermi approximation—in order to speed up the

minimization of the energy. We limit our calculations to three

different values of the appropriate input thermodynamic 3N A=1 1 JEQ)
quantities—namely, energy and density in the microcanoni- xV{Kﬁ,m} + (— - 1)[ AN\ ————— /,

cal formulation used in the present paper. In a future work, 2 A=0 EN) -V ax

devoted to the global analysis of the H/He mixture under

various thermodynamic conditions, a more general func- (1)
tional form will be implemented. Section Il presents the deri-

vation of the chemical potential ™, atoms of a given spe- wherel is the gamma function) is the cell volumeKy is

cies interacting wittN, nuclei of a different species. Section the kinetic energy, an&(\) is the energy corresponding to

Il describes our general energy functional to take into acthe system with the interaction potenth¥/(r). The brackets
count the quantum behavior of the electrons when computing --) denote a microcanonical average. The first term on the
the ionic configurations, a necessary condition for an accuright-hand side is the ideal part of the chemical potential,
rate treatment of the problem. Section IV is devoted to thearising from the entropy cost due to the particle insertion or
description of the MD numerical computations, to the discustemoval, while the second term represents the nonideal con-
sion of the finite-size effects, and to the presentation of theribution of the chemical potential, which depends on the
results obtained for different thermodynamic conditions. Theinteraction between the particle under consideration and the

last section is devoted to the conclusion. rest of the system. The integral can be estimated by a Gauss-
Legendre quadraturid 2]
Il. DERIVATION OF THE EXCESS \=1 < 1 (9E()\)>
CHEMICAL POTENTIAL f d\N\ —————
As mentioned in the Introduction, the ultimate goal of our N
calculations is to determine the thermodynamic stability of a _ }E 1 JEMN) P
given numbem; of atoms immersed in a system WN§ par- o 25 @i EN) -V ax M=<><i+l)/2,

ticles of a different species under given thermodynamic con-
ditions, without any assumption on the electron distributionwherex; are the zeros of Legendre polynomials andare
around the nuclei—i.e., on the degree of ionization of thethe associated weighfs3].

atoms. The stability of such a mixture involves the calcula- These calculations, in practice, require great caution. By
tion of the mixing enthalpy of the system—i.e., of the excessdefinition of the microcanonical ensemble, the total
chemical potential of each immersed atom. The chemicalpotentiak-kinetic) energy of the system must be conserved
potentialy; of a particlei immersed in a plasma corresponds along the simulation. As a consequence, at each step where
by definition to the change of the state function of the approthe potential goes from;V to \;,,V, the kinetic part of the
priate thermodynamic ensemble when one adds or removesmergy must be renormalized in order to maintain the total
this particle to/from the plasma. When the thermodynamicenergy constant. Therefore, the correct calculation of the
limit is achieved(N— %,V —o,N/V=cons}, the result does chemical potential consists in generating several particle
not depend either on the ensemble or on the fact that theonfigurationgto be described in Sec. )ycorresponding to
particle has been added to or removed from the surroundinthe HamiltonianH+\V, and in computing the averages
plasma. Because of the large fluctuations of the system awayhich appear in Eq.1). This can be done by a fully classical
from its equilibrium configuration, one cannot add or removesimulation if the interaction between each kind of particles is
directly a particle, in particular at high density or if the in- described by a classical two-body potential between par-
teraction potential is too stiff. The correct approach consistsicles. Such an approach, however, cannot take into account
in modifying progressively the interaction potentlalV(r)  the fact that the potentials strongly depend on the density and
between the particleand the surrounding particlg¢s=i. The  temperature, evolving from a potential characteristic of at-
caser=0 corresponds to the case where the pariidees oms at low density and temperature to a long-range Coulomb
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potential characteristic of a fully ionized plasma at high denterms correspond to the pressure components
sity and/or temperature. Therefore, the correct phase dia- Within the Born-Oppenheimer approximation, we can
gram, without any assumption on the interaction potentialsthus make a classical molecular dynamics simulation of the
requiresab initio generations of representative ionic configu- nuclei subsystem, while taking into account in the calcula-
rations. This approach is presented in the next sections. tion of the forces the quantum behavior of the electrons. The
Born-Oppenheimer approximation expresses the fact that the
Ill. EUNCTIONAL OF THE ELECTRONS electrons respond instantaneously to a change of configura-
tion of the ions, a fairly good assumption for dense ionic
As mentioned in the Introduction, a correct study of thesystems. The calculation of the last term on the right-hand
problem under consideration requires a correct treatment afide of Eq.(4)—i.e., the interaction with the external ionic
the ion and electron interactions. This implies to take intopotential—involving effective pseudopotentials, is described
account the effects of the quantum nature of the electrons opelow.
the forces acting on the ions. Since the pioneering work of
Hohenberg and Kohiil4], many problems involving inter-
acting electrons have been tackled within the framework of IV. MOLECULAR DYNAMICS
fche _density functional theory. This the(_)ry turns the diago_ngl- A. Method
ization problem of a many-body Hamiltonian into the mini- )
mization of a functionalQ[n(r)] of the electron density, a  We have computed Eq1) for a number ofN; helium
much easier approach when dealing with many electrons. FGHOMS of nuclear chargé,; =2 and mass/; immersed in a
this reason, the DFT has been extensively used in condens&¥Stem OfN; hydrogen particles of chargg,=1 and mass
matter and is described in detail in many textbotdee, e.g., M2 The thermodynamic averages in Et)) are estimated by

[15]). In the framework of the DFT, the grand potential of gengrating a set of representati_ve c'onfigu'rati.ons of the sys-
the electrons can be written in the form tem in a cubic reference cell of sizewith periodic boundary

conditions. This is done by a dynamical simulation of the
equations of motion for the ions:

Qfn(r)] = f dr[Vie(r) = pIn(r) + F[n(r)], )
where F[n(r)] is a universal functional of the ground-state =Fi )
densityn(r) of the interacting electrons and.(r) denotes . ; .
the e>)</te(rnal ion-electron pgc])tentian[n(r)m; 2ninimum whereM; is the mass of théh nuclei. The force§; between

whenn(r) corresponds to the correct density. In our calcula-p""r'“c'es [or equwglently th? total _potentlaN/(r)] ansing
. . . : . from electron and ioMN-boby interactions, beyond any linear
tions, we have chosen to wrife[n(r)] in the following sim- N . )

o . o approximation for the electron-induced screening effects of
plified form (in order to speed up the minimizatipn

the core potential, are calculated from a density functional
Fao(7) approach. These forces involve the ones arising from the
Qn(r)] = kBTf dr n(r)==—— +Cexf dr[n(r)]*? quantum electron distribution obtained from E4) and the

Fu(7) ones derived from the interionic potentiZ|Z;e?/|R,~R;|.
[vn(r)]? The equations of motion are solved with a standard Verlet
+Ecor{N(r)] + CWJ er velocity algorithm[23]. The crucial point of the present pa-
per is that these calculations are completed in the microca-
+e_2ffdr ar n(ryn(ry) nonical ensemble—i.e., at constant energy, volume, and total
2 =2 Iri=ry momentum[24]. Standard simulations, in other thermody-
namic ensembles, imply the introduction of a thermostat, ei-
: N ther by reinitializing the velocities “periodically” or by intro-
¥ f ar n([Vie(r Rion) = 1], “@ ducing new degrees of freedom. These thermostats, however,

3 12,2 i . yield a perturbation of the trajectories, which no longer rep-
where CeX‘z_Z(e’/_T’) e is the exchange Dirac coefficient, resent the ones determined by the forces. Such unphysical
cW:(g(S)ﬁ /mg is the von Welzsacker gradient COITECtiON effects are avoided in the present microcanonical calcula-
coefficient[15,16 (with o=1 in our casg andEq[n(r)]is  tions, which ensure full consistency between the forces and
given by a parametrizatiofil7] of Monte Carlo simulations  the trajectories.

[18]. F3(n) and Fyx(n) are the Fermi integrals, wherg The ab initio calculations, with the aforedescribed func-
=[u—V(r)]/ksT is obtained by the inversion of the relation tional, have been performed with taaINIT code[25]. We
n(r)=(27%)"%(2me/ #2)*%(kgT)3?F /o). Accurate fitting for-  replace the bare Coulomb potential of the nucleus by a
mulas of the Fermi integrals and inverse integrals have beepseudopotential, which differs from the true Coulomb poten-
published in the literaturgl9,20. For a given configuration tial below a cutoff radius,,., removing the cusp constraint at

of the nuclei, we are able to find the electronic density), r— 0 and avoiding the Ir/singularity. The pseudopotentials
which corresponds to the ground state of the system. Thased in our simulations are those of Hartwigsnal. for
Hellmann-Feynman theorefi21,22 enables us to calculate helium [26] and Goedeckeet al. for hydrogen[27]. These

the forces arising from this electron density acting on thepseudopotentials are constructed so as to reproduce with
nuclei and the stress tensor on a o@f which diagonal high accuracy the Kohn-Sham free energy.
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FIG. 2. Total (solid line) and potential(dotted ling energies
FIG. 1. Kinetic energy during the whole switch off of the helium corresponding to the simulation ¢83 H,1 Hg with the switching
atom embedded in a 63-hydrogen-atom system, in the 3-poinparameter equal to 0.5.
quadrature case. The average kinetic energies are displayed as the
solid line, the instantaneous ones as the dashed line. The verticties (obtained by a classical molecular dynamics simulation
lines separate the different domains of constant switching paramet¢o prevent atoms to overlapwe let the system relax during
\. 4000 time steps, a very conservative limit for the considered
densities and temperatures. Even though the main contribu-

The aforementioned cutoff radius determines an uppefion to the total energy at;=0.6 comes from the nearly
bound in density for the domain of validity of the pseudopo-uniform electron background, the forces depend partly on the
tentials. The ones used in the present calculatj@gt have nonuniformity of this electron density distribution. There-
MNoc=0.2 bohr, which implies a density limia=r,—i.e., fore, in order to calculate the forces correctly, the electronic
r«=0.2, where rs=al/a, is the density parametera density—more precisely, the departure of the density from a
=(V/(47N/3))*3is the mean distance between nuclei agd homogeneous distribution—must be calculated with very
is the Bohr radius. This condition corresponds po  high accuracy. In order to fulfil this condition, we require the
<335 g/cnd. energy to converge Withi_dAE/E\_<_1(_T8. 'Unfortunately,

As mentioned earlier, in order to maintain the total energyligh accuracy in the functional minimization does not pre-
constant during the process of switching on or off the interclude energy fluctuations during the simulation due to the
action, the kinetic contributiorE,;,, must be renormalized. discretization of the Newton equations and, most impor-
For the thermodynamic conditions of our runs, this corre-fantly, to finite-size effects. These points are examined be-
sponds to a decrease &, because the potential energy OW. The equations of motion are solved using the Verlet
increases as the interaction is switched(ar0— 1). This  algorithm with a time step equal tit;,=0.25 a.u. This time
implies a large initial kinetic energy. The condition is more StéP enables us to resolve the dynamics of our system accu-
easily fulfilled if one chooses to switcbff the interaction ~rately for any valueaV of the He-H interaction. Figure 2
instead of switching it orf\=1—0). Indeed, during such a displays the conservation of the total energy obtained in our
process, the kinetic part must be increagidtead of de- simulation with this time step. The integral, E@), is first

creasey] which is always possible. As a consequence of this  ,, . e . , . . .
renormalization, we cannot associate an accurate temperatu oo adratore
until the thermodynamic limit is reached. This process is o2} Spomtuadatee o |
represented in Fig. 1, which displays the kinetic energy dur-
ing the whole process and shows the discontinuities appear o1} **-. 1

ing in the mean value d&,;, when\ change from\; to \;,4.

B. Results

(E-V)' 3,E)

0.06 - J
We have tested our procedure on a system consisting o
63 hydrogen nuclei and 1 helium nucleus. The thermody-  %%f T )
namic conditions of our microcanonical simulation &g,
=132.21 hartrees and/=L3=57.906 boht, which corre- 00 L
spond torg=0.6, T=2 1 K, and P=7 10* GPa. The ref- . o T
erence cell of the simulation assumes periodic boundary con ° ot 0z 03 04 05 08 07 08 09 1
ditions, with one particle exiting the cell on one side replaced
by one entering the opposite side. In order for the final re- FIG. 3. Different values of{1/[E(\)-V]}dE(\)/J\) obtained
sults not to depend on the initial distribution, which corre- for the different quadratures. A quadratic fit of the results is given as
sponds to a random distribution of the positions and velocia guide for the eye.
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TABLE I. Integration of Eq.(2). TABLE lIl. Chemical potentials for different thermodynamic
conditions.
Three  Six Nine
points points points Trapeze {E(hartree, {132.21, {132.21, {20.06,
V (boh)} 57.9% 139.40 139.40
A=t 1 9EN) rs 0.6 0.8 0.8
ﬁzo d\ WT 0.06568 0.05578 0.05548 0.05565 —uy /KT 19.16 16.59 13.94

boundariesand from the fact that the accessible phase space
increases with the total number of atoms. The first effect

calculatgd with ar1_\/|-p0|nt Gauss-Legendre quadrature. Af- becomes important when the characteristic length of interac-
ter the first 4000 time steps to let the system relax, an otheﬁon is of the same order as the simulated box—i.e.. at much

4000 time steps simulation is ran to generate several Cor‘f'gLIliigher density than the present simulations. Quantification of

rathnsl.l T?)e aric;urre_rwxE()\l/O[E()\)—v] 'Si chlculated ”}9' the second effect requires simulations with different values
merically, by calculating=(A£0.01) every 10 time steps for ¢\ “The results are presented in Table Il. The chemical

a fixed configuration ané()-V. A last run is devoted 10 atential is estimated with a centered scheme: ie., the
the calculation of the ideal part of the chemical potential by-hemical potential corresponding to a helium fractin
generating 10 000 different configurations of 63 H atoms and- 1 /128=0.008 is evaluated from the entropy difference be-
the evaluation ofKy%). _ tween the{0 He,63 H system and th¢l He,63 H system
We have tested the validity of thd-point quadrature to  (with full interaction. The statistical uncertainties on
estimate the integral, E@2), by doing similar calculations, —u,/KT are +0.02 for the{l He,63 H and{2 He,126 B
for the same thermodynamic conditions, with a three-pointsystemS’ and +0.04 for tHé He,252 B one(achieving the
six-point, and nine-point quadrature. The results are showgsme statistical uncertainties scalesNds The results be-
in Fig. 3, and the resulting evaluations of the integral argyeen the three systems for a He fraction equal to 0.008, as
given in Table I. As seen in this table,.a six-point quadraturespown in the table, are thus fully compatible, and no statis-
is enough to calculate accurately the integ@gl Our calcu-  icqly significant trend appears. The same simulations yield
lations of the chemical potentiali1/KT of a helium atom 556 the estimation of the helium chemical potential for dif-
embedded in a 63-H atom plasma for our thermodynamigerent number fractions. All the results are given in Table I
conditions (—; /KT corre?ponds to the ideal part of the 5ng are compatible within the statistical uncertainties. For
c_hemlcal potential and /KT to the excess contribution  he {1 He,63 B mixture, we have also conducted calcula-
yield tions for two other thermodynamic conditions, displayed in
o . Table Ill. As expected intuitively, it is easier to add an atom
_ My J in a low-density plasma than in a high-density aaé con-
T 1402, KT 514, KT 19.16. (6)  gtant total energyor in a cold plasma than in a hot ofat
i constant density
In order to estimate th&l dependence of our result, we |t js interesting to compare our results with
have also calculated the entropy cost which corresponds e limit of rigid electronic background at high density
the removal of 2 He particles surrounded by 126 H atomgor the binary ionic mixture, the so-called BIM limi29,30.
and 4 He particles surrounded by 252 H atoms, for the sam@ur reference condition&,,,=132.21 hartrees an¥/=L3
thermodynamic conditiongdensity and energyas for the  =57.906 boht—i.e., r.=0.6—correspond to T=2.2
{1 He,63 H system. These computations are much morex 105 K, P=6.7x 10* GPa, andAS=19.15kg (Table 1)) in
time consuming(the computation time scales roughly asthe simulation. For this density and temperature, the BIM
t«N?3), and the removal of the helium atom must be done Zorresponds tdP=7.2x 10* GPa andAS=21ks. We have
and 4 times, respectively. We expect a very small depenalso ran a simulation at higher density, namgly0.3, which
dence of the results on the si@) of the simulated system. s close to the density limit of our pseudopotentials. The total
Indeed, we do not calculate the chemical potentiadréHe  energy is equal tcE,=672.76 hartrees. In that case, the
atom, but the chemical potential of a constémaction (xye  present calculations vyield T=4.5x10° K, P=2.15
=1/64) of He in a H-He mixture. As a consequence, tie X 10° GPa, whereas the BIM results afee4.5x 1° K, P
dependence of the results stems from the interaction betweer2.2x 10° GPa. The small differences between the simula-
a He atom with its replicagdue to the periodic condition tions and the BIM reflect the contribution due to the electron

TABLE Il. Finite-size effects on the chemical potential.

System {1 He,63H {2 He,126 B {4 He,252 H
Xpe=Npe/ (N +Npe) 0.004 0.008 0.012 0.004 0.008 0.012 0.004 0.008 0.012
—uq /KT 19.16 19.15 19.15 19.15 19.17 19.14 19.21
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gas polarizationinhomogeneous distributipnwhich starts APPENDIX A: MICROCANONICAL AVERAGE
playing a role around these densities, and the contribution ] ) o
due to the interactions between particlesdifferent species ~ We consider gclassical system with fixed total enerd,

(namely, H and Hp These latter are not taken into accountVolumeV, and total momenturp,,, which contains two dif-

in the BIM, which is based on the so-called linear volumeferent kinds of particletN; and N, with N=N;+N,. In this
law, where only the ideal entropy of mixture is included. ~ Microcanonical ensemble, the number of accessible states for

this system is
V. CONCLUSION

N

In this paper, we have derived a new method, based on §Q = WLI dpMdg" S(E - H) 5(ptot—2 pj),
physics first principles, to calculate the excess potential of a =Ny ENg! j=1
number fraction of particles immersed in a mixture of par- (A1)
ticles of different species, as given by Ed). The calcula-

tions are based on a consistent treatment of the forces actir\ml%1 CoN 2 Ny I .
on the nuclei, taking into account the contribution arisingWhereH==j=:pj/2m;+V(q") is the Hamiltonian of the ionic

from the quantum electrons, by calculating self-consistenthF€nters and includes the modification of Lhe CNouIcg)mb poten-
the equations of motion of the classical nuclei and the funclials due to the electron gas polarizatiaip”= T, I1j-,dp;,
tional density of the electronic distribution. The method is@nddp; is the| component of the momentum of the particle
applied directly in the microcanonical ensemble, avoiding’> the same fodqg™. Then

the use of a thermostat, and thus ensures consistency be-
tween the forces and the trajectories of the particles. The

N
bare Coulomb potential is approximated at short distances by Q= m;f dpMdg" 6(E - H)5( Prot— > pj)
pseudopotentials which remain valid up to large densities PN, T N! =1
(rs=0.2), where the linear response theory becomes valid.
The thermodynamic quantities are calculated for different = ml(E,ptm), (A2)

configurations, representing the evolution of the interaction,

and thus of the system, from the initial case ofideal atom

“1” inserted in a system of particles “2” to the final case wheref(x)=1 if x>0,0 otherwise, ant{E, p,,) denotes the

where all interactions between the immersed particle and thiategral.

surrounding nuclei are taken into account. Only properly fol- The Laplace transforrttowardE) of | is [31]

lowing such a series of changes of equilibrium states ensures

thermodynamic consistency and thus allows a correct evalu- N -

ation of the energy and pressure contribution to the excess _ NN _ _ _Lp\a-SE

chemical potential of the immersed particle. Previous simu- £l _f dp"dq 5(p‘°t gﬁ) fmin(H) dE (E - H)e

lations[11] calculated the excess enthalpy directly from the N

difference between the final and the initial states, yielding an _ NN 1

incorrect evaluation of the contraction work and, thus, of the ‘f dp™da 5( Prot = Z pj)ge

pressure contribution. =
The validity of the method has been tested with the case N

of a dense hydrogen/helium mixture for three different he- =f dp" 5(ptot‘ Z Pj)

lium fractions and three different thermodynamic states. The =1

forces are calculated with very high accuracy, with a conver-

gence criteriumAE/E| < 1078, Finite-size effects on the final ><exp<

results have been quantified and found to be small

(~10°%), leading to fluctuations of the same order on the e pamiltonianH is general and does not have, in par-
total energy(see Fig. 2 The method provides robust foun- yicjar, to be positive, although it needs to have a lower limit.
dations for accurate evaluations of the excess thermodyggte that with a change of variable=E-min(H), the inte-

namic quantities of dense binary mixtures, without any as- +20 +o0 :
. oL ral [+, becomes;”, and the results remain unchanged.
sumption on the electron density distribution and thus on thg [minik Jo g

degree of ionization of the atoms. This opens the door to Then

accurate calculations of phase diagrams of dense mixtures of

atoms and partially or fully ionized plasmas, a subject of N N p?
prime interest for the structure and the evolution of giant JO:Jde 5(ptot—2 pj)exp<—52 —J—) =2,
gaseous planets. Work in this direction is in progress. =1 j=1 2,

N p»2 1 N
—g> L dgN=g™sMa")
Eij f q S
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+o0 N
1
Jl= dN——f d % - -)
FJII f Px onl . Prot, 0| Prot, glpjx
N p2
Xexp (- s> ) exp (i{Pror)

j=1 2m
o)

N

1
== JdpJ exp(
V27TJ 1

N N

1 /2wm~> ( 2 m 2)

= — Jexp| - ——22).
\y’Zw(jl}l S P 2s ¢

Then

I

1=

SN-D2
\/27721 M

ex —;p2
ZEJN:lmJ O J

With p;=0, we get

|
-1 \'27ij 1

J=FAIN=

N 5 \3

‘JO: \]3: —
eS| F

and

=L7L0]

Y. 2mm \®
_ =1 ! N N
——_— qu oE-V(dY)

) \/2772;11 m;

[E _ V(qN)]3(N—l)/2

X .
F(—B(NZ_ Y + 1)

Equation(A2) thus reads

N !’_
1 Hj=l \3'2’7ij
h3NN1 I'N,! \/2772:\‘:1 m,

Q(Evptot = 0) =

[E _ V(qN)]3(N—1)/2

[ aaue-viat
i

In a similar way, we have foruﬁ(aQ/aE)V,Nl,Nz:

3(N—1)+1) '
2
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N ~———\3
1 szl\’Zij
= 3N N
h*N; 1N, \/2w2j=1m,-

[E- V(qN)]3(N—1)/2—1

3(N-1)
(%52

For a quantity depending only af'—i.e., A(g")—we have

da™ 6(E - V(a"))

(A4)

N

(A= WllN, f dpNdgS(E - H)5( Prot— 2 IOj)A(qN)

=1

f dgNa(E - V(gM)[E - V(gN) PN-D271A(g)
= ., (A5)

f dgo(E — V(qM)[E - V(g PNz

where(- --) denotes amicrocanonical average

APPENDIX B: CHEMICAL POTENTIAL BY THE
PARTICLE INSERTION METHOD

The definition of the chemical potential of the particle 1 is

_B_ (f’_s) B1)
kT 0N1 E,V,N2

With S=k In w and the equations derived in Appendix A,
this yields

ﬂ _ In le+l_|n le
KT Ny+1-N;

WN, +1
=In—

le

&N—D)
N 3/2 I
—In (27Tm1>3/2( Ej::l_ mJ ) 1 ( 2
- 2 N+1 +
h 21':1 m Np+1 F(3?N>

J qu+l 0(E _ V)[E _ V(qN+l)]3N/2—l
X . (B2)
f dg"o(E - V)[E - V(g") N2

Let us defindy as

= f da" 6(E - V(q"))[E - V(g PN

EJ qu 0(E_V(qN)) KﬁI(N—l)/Z—l,

whereKy=E-V(q") is a function ofgN and should not be
formally confused with the kinetic part of the Hamiltonian
(even if Ky is equal to the kinetic energy in a molecular
dynamics simulation
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We get - 1))

N 312

M1 (27Tm1>3/2 Ej:]_mj 1 F( 2

KT 2 N+1
o " Ei=1 m; Np+1 F<3_N>
In+1= f qu*J dg" 6(E - V)[E - V(") = V(qp.) PV 2
V( ) 3N/2-1
N
" ( LV >3N’2-1,
Kn

APPENDIX C: CHEMICAL POTENTIAL BY THE
THERMODYNAMIC INTEGRATION METHOD

and: The variation of entropy when going from a state with
interaction\=0 to A=1 reads
| V(q ) 3N/2-1
% = f qu+l< K%/2<1 - %) ’ A=1 aS
N N AS:J. d\—. (CY)
=0 A
which yields, for the chemical potential We can thus derive

N - V(gV*t vy N+ 3N/2-1
1S_1liw _ (&f dg™ - e(E(N) = V(g ))EMN) = V(g™ )]
KON wdN f

{29

1 JE
fdwﬂmam—VMM%E?V%ﬂHM‘VWMmel(3N )<il&E>

dg’™HBEN) ~ VGV D) - V(g PV

X

2 E-VJA

f do’*LoEN) - V(G H)[E) - Vg V2

The thermodynamic integration proceeds in two steps. The The interaction is then progressively switched on, and the
first one deals with the insertion of a free particle into thenonideal part of chemical potential is then given by

system. The entropy cost of this insertion is given by the

formula established for the insertion method:

1 A=1
3N 1 JEMN
0 ol S\ ()M ). e
ﬂ:ln (27Tm1> j=1 ' 1 T 2 A=0 E(N) -V aA
>

kT h? Mimj/ N+l
=1
The total chemical potential is the sum of the two contribu-
(&N—D) et
r Y tions:
X —————WKZH |, (C2)
2
1" R
2 0 1
O gy (ca

whereV is the cell volume. KT kT KT’

026403-8



MICROCANONICAL CALCULATIONS OF EXCESS.. PHYSICAL REVIEW E 70, 026403(2004)

[1] T. Guillot, G. Chabrier, D. Gautier, and P. Morel, Astrophys. J. [19] S. Blinnikov, N. Dunina-Barkovskaya, and D. Nadyozhin, As-

450, 463(1995. trophys. J., Suppl. Sell06, 171(1996.

[2] W. Hubbard, A. Burrows, and J. Lunine, Annu. Rev. Astron. [20] H. Antia, Astrophys. J., Suppl. Se&4, 101 (1993.
Astrophys. 40, 103(2002. [21] R. Feynman, Phys. Re6, 340 (1939.

[3] E. Salpeter, Astrophys. J., Lett. E81, L83 (1973. [22] O. Nielsen and R. Martin, Phys. Rev. 8, 3780(1985.

[4] (Dl.gigivenson and E. Salpeter, Astrophys. J., Suppl.221 [23] D. Frenkel and B. Smitnderstanding Molecular Simulation,

[5] D. Stevenson and E. Salpeter, Astrophys. J., Supgl.239 From Algorithms to ApplicatiogAcademic, San Diego, 1996

(1979 [24] In order to correct for numerical errors in the molecular dy-
[6] D. Stevenson, Phys. Rev. B2, 3999(1975. namics simulation, it is convenient to fix also momentum,
[7] J. Hansen, G. Torrie, and P. Vieillefosse, Phys. Rev1@ since the total momentum of the box must be conserved. In the

2153(1977). thermodynamic limit, both ensembles lead to the same results.
[8] P. Vieillefosse, J. PhygParig 42, 723(1981. [25] ABINIT is a common project of the Université Catholique de
[9] G. Chabrier and T. Guillogunpublishegl Louvain, Corning Incorporated, and other contributors. Details
[10] J. Klepeis, K. Schafer, T. Barbee, and M. Ross, ScieR64 can be found on the website http://www.abinit.org

986 (1991. [26] C. Hartwigsen, S. Goedecker, and J. Hutter, Phys. Re%8B
[11] O. Pfaffenzeller, D. Hohl, and P. Ballone, Phys. Rev. L&, 3641(1998.

2599(1993. [27] S. Goedecker, M. Teter, and J. Hutter, Phys. Re\6431703

[12] W. Press, S. Teukolsky, W. Vetterling, and B. Flanné¥y-
merical Recipes in FORTRAN: The art of scientific computing
(Cambridge University Press, Cambridge, England, 1987

[13] Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tablesedited by M. Abramowitz and I.

(1996.

[28] Even if atomic units are the most natural ones in the context of
DFT, cgs ones may be more convenient in a different context;
here are some conversion factors: 1 harrde36

Stegun(Dover, New York, 1975 x10erg, 1 bohe=0.53x108cm, and 1 atomic unit of
[14] P. Hohenberg and W. Kohn, Phys. Re\86, B864 (1964, time =2.42x10°'s.
[15] R. Parr and W. YangDensity-Functional Theory of Atoms and [29] G. Chabrier and A. Potekhin, Phys. Rev.5B, 4941(1998.
Molecules(Oxford University Press, New York, 1989 [30] A. Potekhin and G. Chabrier, Phys. Rev.@2, 8554(2000.
[16] C. von Weizséacker, Z. Phy€6, 431 (1935. [31] The functionl(x) is continuous by steps and is bound by
[17] J. Perdew and Y. Wang, Phys. Rev.45, 13244(1992. explax) for x— +« so that the Lapace transform can be ap-
[18] D. Ceperley and B. Alder, Phys. Rev. Le#5, 566 (1980. plied to1(x).

026403-9



